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The notion that elementary systems correspond to irreducible representations of the
Poincaré group is the starting point for this paper, which then goes on to discuss how a
semigroup for the time evolution of unstable states and resonances could emerge from
the underlying Poincaré symmetry. Important tools in this analysis are the Clebsch-
Gordan coefficients for the Poincaré group.

KEY WORDS: unstable systems; Poincaré group, semigroup.

1. INTRODUCTION

One productive perspective on theoretical particle physics is Wigner’s notion
of the stable particle as a unitary, irreducible representation (UIR) of the Poincaré
group. However, this idea loses some of its clarity when applied to stable particles
that are not elementary, such as the proton, made of its three quarks and a sea of
gluons and quark-antiquark pairs, or even the electron, with its cloud of virtual
photons. Trying to fit unstable particles into the UIR scheme creates even more
interesting questions, and is the subject of this article.

Before proceeding, I must explain my terminology, which I will introduce
with this edited quotation from a famous article by Newton and Wigner (1949).
This quotation also touches on some of the main ideas of this paper and therefore
serves as a good introduction.

It is well known that invariance arguments suffice to obtain an enumeration of the
relativistic equations for elementary systems. The concept of an “elementary system”
is, however, not quite identical with the intuitive concept of an elementary particle. . .
The definition under which the aforementioned enumeration can be made is. . . : it
requires that all states of the system be obtainable from the relativistic transforms of
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any state by superpositions. . . Every system, even one consisting of an arbitrary number
of particles can be decomposed into elementary systems.

The first two sentences make the distinction between elementary systems
and elementary particles. In what follows, stable particles will be considered as
elementary systems, even if they are not elementary particles. The third sentence
is a serviceable definition of an irreducible representation, therefore, I will use
the terms UIR, elementary system, and stable particle interchangeably as context
suggests. It is the fourth and final sentence that makes a truly bold claim that will
be explored but not resolved in this article. Mathematically, the statement suggests
that every particle configuration should be expressible as direct products of UIRs
of the Poincaré group. In other words, the state of any particle or particles (and even
unstable particles) should be expressible in a basis constructed of stable particles.
Just what this means, how such constructions are made, and how it connects to
questions of time asymmetry and asymptotic completeness will be considered in
this paper after I give brief perspective on the unstable particle zoo.

Before continuing though, I must justify the title. As a working definition of
emergent properties, I mean such properties arise out of more fundamental entities
and yet are novel or irreducible with respect to them. In physical systems, emergent
properties tend to develop as the number of constituent systems or complexity of
those systems grows. There are many examples of the productivity of this concept
in science from biology to adaptive computer networks. The point of view explored
in this paper is that the characteristic behavior of unstable particles is expressed by
the Poincaré semigroup, which allows only space-time translations into the forward
light cone, and this is just such an emergent property. Unstable states at a variety
of time and energy scales (not just in particle physics) evidence two features:
exponential decay and Breit-Wigner (or Lorentzian) resonance amplitudes. By
looking at how instability is included in quantum theory and how stable particles
are represented, I hope to raise interesting questions about how this ubiquitous
property emerges.

2. CHARACTERIZING PARTICLES

A truly satisfying particle theory would start with a very small set (or even an
empty set) of physical parameters and from them be able to predict and/or explain
the characteristic parameters of all particles. By characteristic parameters, as an
example I mean the data listed in the “Review of Particle Physics” (Hagiwara
et al., 2002) which is used to distinguish between different particles. Although the
Standard Model does a good job at many things, it is not yet this satisfactory theory
and instead the characteristic parameters must be treated in various ways. For some
of the characteristic parameters there is no theory that predicts their values; they
are input parameters into the Standard Model like the lepton masses. Some other
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characteristic parameters are related by calculations within the Standard Model
to the fundamental parameters. Others are related in principle by the theory,
but the the calculations cannot be evaluated to a level of accuracy sufficient for
comparison with experimental data, such as the hadron masses, and must be treated
as independent phenomenological parameters or by phenomenological theories.
In any case, we can group the parameters into three rough groups based on their
physical nature.

The first set of parameters are intimately related to the symmetries of space-
time. These are the mass m and spin j of the particles and the intrinsic parity.
For unstable particles, it is generally accepted that the finite lifetime leads to an
uncertainty in mass as evidenced by the shape of resonant cross sections; recently
Blum and Saller have raised the question whether a similar uncertainty also exists
for spin (Blum and Saller, 2003). These space-time characteristic parameters fit
nicely into the Wigner UIR particle picture, to be discussed in more detail later.

Another set of internal parameters such as charge, lepton number and flavor
may also be seen as consequences of some internal symmetry group or may
just have to be arrived at phenomenologically. For non-elementary particles, some
explanations rely on the properties of constituent particles. For composite particles,
other characteristic information may take the form of form factors and other
structure functions.

Finally, if the particle is unstable, it will have characteristic instability param-
eters, most notably lifetime or width, but also branching ratios and perhaps other
information like phase relations between decay channels. I will focus the rest of
this section on lifetime and width, since it is these parameters that are associated
with the Poincaré semigroup and time asymmetry.

Let us look at the spectrum of particles. Figure 1, taken from (Harshman,
2003), depicts the mass M and width � of 139 unstable particles, with mass plotted
logarithmically on the horizontal axis and width plotted logarithmically vertically.
The shape of each plotted point indicates the type of particle it is (gauge boson,
e.g.) and for the hadrons the style indicates some information about the quark
content.

The data for the 139 unstable particles come from the 2002 edition of
The Review of Particle Physics (Hagiwara et al., 2002), and in particular
the list of well-known, reasonably well-measured unstable particles from the
“Summary Tables of Particle Properties” therein. Not every particle in the
“Summary Table” has been included; only those particles found in the file
(http://pdg.lbl.gov/rpp/mcdata/mass width 02.mc) that the Particle Data Group
tabulates, of the mass and width data, for use in Monte Carlo event generators
and detector simulators. For unstable particles whose lifetimes τ are quoted in the
Review (Hagiwara et al., 2002) and not their widths, the width values in the Monte
Carlo file are found using the Weisskopf-Wigner relation � = h̄/τ (more will be
said about this later).
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Fig. 1. Log-log plot of Mass/MeV versus Width/MeV. Choice of 139 unstable particles plotted
described in text. Key: hollow circles—gauge bosons; black stars—leptons; black triangles—light
unflavored mesons; gray triangles—strange mesons; hollow triangles—flavored charmed mesons
(including charmed/strange mesons); black diamonds—unflavored charmed mesons; gray
diamonds—flavored bottom mesons (including bottom/strange and bottom/charmed mesons);
hollow diamonds—unflavored bottom mesons; black squares—N and � baryons; gray squares—
strange baryons (including �, �, � and � baryons); hollow squares—charmed and bottom
baryons.

The list of particles from the Monte Carlo file (http://pdg.lbl.gov/rpp/
mcdata/mass width 02.mc) has been modified and applied in the following way
in Fig. 1:

1. The stable particles, the proton, electron, photon and neutrinos, are ex-
cluded.

2. The nearly-stable neutron is neglected for reasons of scale.
3. The Monte Carlo file includes some particles for which only an upper

bound of the width has been measured. They have been excluded. Ex-
amples include some light unflavored meson resonances like the f0(980),
other meson resonances such as the D∗±

s and χb0(1P ), and a few baryon
resonances like the �c(2520)+.

4. The top quark, not truly an independent particle like the others in the list,
is not included.

5. The symbol plotted for a particle also represents its antiparticle, except
for the neutral K-mesons. For these, the mass eigenstates K0

S and K0
L are

plotted instead of the flavor eigenstates K0 and K̄0.
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6. A single symbol is plotted for all different charge-species of a hadron un-
less different masses for different charges have been measured. For exam-
ple, each point representing a � baryon represents all four charge species
{++,+, 0,−} corresponding to quark contents {uuu, uud, udd, ddd}.

Then what unstable particles are included? The weak gauge bosons W and
Z are at the high energy extreme and the muon is at the low energy extreme. The
other unstable lepton, the tau, is in the middle, along with a host of hadrons made
up of five out of the six quarks: up, down, strange, charm and bottom. While the
gauge bosons and leptons are to our best knowledge structureless; the hadrons
are composite. Subsequent references to particles refer just to this set of well-
established, well-measured unstable particles, and therefore should not be taken
to refer to all possible particles that have or have not been observed or theorized.

How are the instability parameters of these particles measured? The answer
is very different depending on whether they are observed as decaying states or
as resonances. For decaying states, the lifetime is measured by the exponential
decay rate, observed, for example, in an experiment where an ensemble of sys-
tems are produced at a well-localized locations. Then if the decay vertex can be
identified, the distance between production and decay can be converted into time
with additional kinematic information and the resulting histogram can be fit to
an exponential. For the lifetime to be measurable requires that the lifetime not be
too short; the shortest that has been directly measured is the π0 with a lifetime
of (8.4 ± 0.6) × 10−17 s, where an exponential was fit to three points (Atherton
et al., 1985). This corresponds via the Weisskopf-Wigner relation to a width of
around 10−5 MeV. All decaying states for which the lifetime is measurable decay
via the weak interaction and are along the bottom of Fig. 1.

On the other hand, particle resonances are detected as rapid variations (usu-
ally peaks) in the cross section which have a maximum value and a width. As the
center-of-mass energy of a collision is scanned over some range, there may appear
an enhancement of the elastic cross section or the cross section into a particular
set of inelastic channels. After extracting the background and accounting for un-
certainties in the preparation and detection apparatuses and other effects (such as
radiative corrections), the resonant cross section σR as a function of center-of-mass
energy (or center-of-mass energy squared s) can be extracted. This process can
become more complicated if there are multiple resonances in the same energy re-
gion, interfering resonances, or background-resonance interference. With current
experimental energy resolutions, a width must be larger than 1 − 10 MeV to be di-
rectly observed, corresponding to lifetimes shorter than about 10−23 s. As a result,
there are no particles for which both the lifetime and width can be independently
measured and therefore the Weisskopf-Wigner relation has not actually ever been
tested. There are also some particles for which neither the lifetime or width has
been directly measured and other techniques have been applied.
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We return now to the question raised in the introduction. Can these particles,
which may be elementary, as in the case of the muon, or composite, like hadrons,
be decomposed into elementary systems that are irreducible with respect to the
Poincaré group symmetry? And if so, how? Finally, how does the semigroup
behavior of their time evolution emerge? If we believe that the behavior of the res-
onances and decaying states are not qualitatively different, but only quantitatively
different in their different time and energy scales, how is the Weisskopf-Wigner
relation (untestable as it currently is) built into the theory?

3. THEORY OF DECAYING STATES

First we consider what a satisfactory theory of decaying states would entail to
describe the phenomenology of lifetime measurements. We want something like

|〈decay products|decaying state(t)〉|2 = e−t/τ = e−�t, (1)

with the restriction that the equation only holds for t ≥ t0, where t0 is the creation
time, which is usually well-defined on the timescale given by the lifetime τ .

Just such decaying state vectors were introduced by Gamow a long time
ago for analysis of alpha decay (Gamow, 1928). However, despite the obvious
phenomenological utility of such states, there are mathematical problems with
their use in standard quantum theory.

• Hermitian operators like the Hamiltonian have real eigenvalues in the
Hilbert space, whereas (1) requires the decaying state to have a complex
energy E − i�/2 or some relativistic generalization.

• Khalfin (1972) proved that there can be no exponentially decaying time
evolution for Hilbert space states, although there are Hilbert vectors with
time evolution infinitesimally close to exponential decay.

• Hegerfeldt (1994)2 proved that time localization like that implied by the
time t0 restriction is not possible in the Hilbert space; there will either
always be a probability for decay (including for times before creation) or
there can be no decay (Bohm et al., 2002).

These are all serious objections if we hold that the quantum theory must
be constrained to the Hilbert space. Physicists have seen fit to leave the Hilbert

2 A general result by Hegerfeldt shows that the transition probability between two Hilbert space vectors
is either different from zero for all times −∞ < t < ∞ if it is different from zero at times t ≥ 0
(which contradicts causality) or is zero at all times −∞ < t < ∞ (which means there is no decay that
starts at a finite time t = 0). In other words, for resonances the decay probability has to be zero for
(almost) all t if it is zero in any time interval �t before the time t0 at which the decaying state has been
prepared (e.g. before the atom has been excited into a resonance state). See Hegerfeldt, G. C. (1994).
Phys. Rev. Lett. 72, 596; Irreversibility and Causality in Quantum Theory—Semigroups and Rigged
Hilbert Space, Vol. 504, Springer Lecture Notes in A. Bohm, H.-D. Doebner, and P. Kielanowski
(Eds.), Physics, Springer, Berlin, 1998, p. 238.
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space before. The Dirac ket, the plane wave scattering states with delta-function
normalization, are not in the Hilbert space but they nonetheless provide such a
useful tool that generations of physicists have adopted them in their calculations.

Dirac kets, and Gamow kets, can be put on a firm mathematical footing by
invoking the program of Gel’fand triplets or rigged Hilbert spaces (RHS) (Bohm,
1973; Bohm and Gadella, 1989). The state vectors (or choosing a specific rep-
resentation, the wave functions) are restricted to a linear, topological space �

with a stronger topology than that of the Hilbert space H with Lebesgue norm.
For a stronger topology, a suitable and sufficient choice for many systems is that
the algebra of observables be continuous on the space. An example of a such a
space of well-behaved vectors for the harmonic oscillator is the Schwartz space of
infinitely differentiable, rapidly decreasing functions. The dual space to �, �×,
which has a weaker topology than H, will, for suitable choice of �, have the
eigenkets of the algebra of observables, even if they have an unbounded spectrum
in H. For example, the dual of the Schwartz space construction for the harmonic
oscillator, the space of tempered distributions, contains the eigenkets of position
and momentum. This triplet of spaces

� ⊂ H ⊂ �× (2)

is called a Gel’fand triplet or rigged Hilbert space and is constructed for represen-
tations of the algebra of observables relevant for a particular system.

To make the Gamow kets mathematically viable for unstable relativistic
particles, a suitable choice for the space � must make the vectors very well-
behaved so that analytic continuation of energy (or center-of-mass energy squared)
is possible (Bohm et al., 2003a,b). A little bit more detail will be provided below,
but the kernel of this approach is the Hardy class hypothesis. Instead of using the
Hilbert space axiom

{space of prepared states} = {space of detected observables} = H (3)

or the slightly more general revision

{space of prepared states} = {space of detected observables} = � ⊂ H, (4)

we distinguish mathematically between states and observables and make the new
hypothesis (Bohm et al., 1994):

The prepared states are describedby : {φ+} = �− ⊂ H ⊂ �×
− (5)

and the registered observables by : {ψ−} = �+ ⊂ H ⊂ �×
+.

Here we use a pair of rigged Hilbert spaces of Hardy type, where the energy
wave functions of the vectors φ+ ∈ �− and ψ− ∈ �+ are well-behaved Hardy
functions in the lower and upper half complex planes, respectively. The Gamow
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vectors, together with the out-plane wave solutions of the Lippmann-Schwinger
equations, are elements of the space �×

+.
Choosing different spaces for in-states and out-observables calls into question

the notion of asymptotic completeness often invoked in quantum field theory. If
we still hold that any particle configuration can be decomposed into elementary
systems at any time, we now must consider whether the elementary systems
satisfy the boundary conditions implied by �+ or �−, because it appears that
these boundary conditions are required to describe the emergent property of time
asymmetry with solid mathematics.

4. THEORY OF PARTICLE RESONANCES

Assuming the resonance is isolated, the amplitude for resonance scattering
has a complex pole which can be parameterized by the mass M and width �.
However, there are several ways of achieving this parameterization (see Bohm
and Harshman, 2000 for a review of this applied to the Z-boson).

In the on-mass shell renormalization approach, the pole in the resonance
amplitude is derived as the pole in the renormalized propagator for the resonance
state and takes the form

aR(s) ∝ 1

s − M2 + i
√

s�(s)
, (6)

where �(s) is a function for the width that depends on the center-of-mass energy
squared s. In the case of the Z-boson, where the decay products have only a
small fraction of the the Z-boson mass, the form is chosen from phase space
considerations

�Z(s) =
√

s

MZ

�Z. (7)

The parameterization of the resonance amplitude by the on-mass shell renormal-
ization approach has been shown to be arbitrary and gauge dependent (Bardin et
al., 1988; Berends et al., 1988; Bernicha et al., 1994; Bernicha et al., 1996; Con-
soli and Sirlin, 1986; Sirlin, 1991a,b; Stuart, 1991a,b; Willenbrock and Valencia,
1991).

An alternate approach begins with the association of the resonance to a
pole in the analytically continued S-matrix. The partial amplitude with angular
momentum corresponding the resonance can be broken into a non-resonant part
and a pole term with the form

aR(s) ∝ 1

s − sR

, (8)

where sR is a complex number indicating the location of the pole. The complex
number sR can be parameterized by the real mass and width in many ways, the
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most common being

sR = M2
ρ − i�ρMρ. (9)

An alternate parameterization which is analogous in form to the non-relativistic
pole parameterization is

sR = (MR − i�R)2. (10)

How should one choose between these three forms? All result in the same
functional form for the cross section, just with different values for mass and
width. Already mentioned are the theoretical problems with (6), and there are
phenomenological reasons, too; form (8) seems to give more consistent results
for wide resonances across different decay channels (Bernicha et al., 1994, 1996).
Another distinction between the forms (8) and (10) is that only for (10) is the
definition of width consistent with the Weisskopf-Wigner relation (Bohm and
Harshman, 2000). This connection is established via the relativistic Gamow ket,
discussed in more depth below. The relativistic Gamow ket has a complex mass
with width � and exponentially decays under translations into the forward light
with a rest frame lifetime that is exactly τ = h̄/�.

That the Weisskopf-Wigner should be valid is a theoretical bias that emerges
from the perspective of the introduction: unstable states, both decaying states
and resonances, are representations of the Poincaré semigroup, i.e., elementary
systems except for their instability. This amounts to the opinion that unstable
particles should be as similar in representation as possible to stable particles,
except for non-zero width as an emergent property. With that in mind, we turn to
how stable particles are represented so we can see how to extend the notion to the
relativistic Gamow ket.

5. UIRs OF THE POINCARÉ GROUP

The Poincaré group is the semidirect product of the orthogonal transfor-
mations in Minkowski space, � ∈ O(1, 3) with the translations in a ∈ R

4. The
restricted (or proper, orthochronous) Poincaré group results from the restriction of
� to unit determinate, i.e. the Lorentz group � ∈ SO(1, 3), hence excluding time
and space reflections.

For quantum mechanics, we are concerned with representations of a symme-
try group on the spaces of states {φ} = �+ and observables {ψ} = �−. Probabil-
ities to find a state in an observable should then respect the symmetry:

|〈φ|ψ〉|2 = |〈U (�, a)φ|U (�, a)ψ〉|2, (11)

where U (�, a) is the unitary representation of the group element. Since all that is
measurable is probability, and since probability is proportional to the norm square
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of the amplitude, the group composition law can only be verified up to a phase:

U (�, a)U (�′, a′) = ωU (��′, a + �a′), (12)

where |ω| = 1. Wigner showed (Wigner, 1939) that for the Poincaré group this
phase can be reduced to ω = ±1, and removed entirely if, instead of considering
the Lorentz transformation, one considers its covering group SL(2, C), the group
of complex two-by-two matrices with unit determinate. So, to analyze the con-
sequences of Poincaré symmetry for quantum mechanical systems, one studies
the projective representations (representations up to a phase) and one is led to the
quantum mechanical Poincaré group, the semidirect product of SL(2, C) with the
translations T4. The result of considering the covering group is that it includes the
half-odd-integer spin representations. For simplicity, we will still notate elements
of the restricted Poincaré group (�, a) although this corresponds to two different
elements of the covering group, i.e., the quantum mechanical Poincaré group.

Following the construction of Wigner (1939), a special case of the gen-
eral method of induced representations (Mackey, 1951), UIR spaces are labeled
UIR(s, j ) by a fixed pair of eigenvalues of the Casimir invariants of the Poincaré Lie
algebra. Poincaré transformations leave UIRs invariant, i.e. if φ ∈ UIR(s, j ), then
U (�, a)φ ∈ UIR(s, j ). Because of the properties of the Lie algebra of the Poincaré
group, Wigner and many others have found it natural to identify (s = m2, j ) with
the invariant mass squared and spin of a single, interaction-free particle and there-
fore to associate the UIR(s, j ) with the state (and observable) space of that particle.

For later use, we give a description of the basis used to decompose the UIR as-
sociated with mass squared s and spin j and positive energy. A standard choice for
the complete set of commuting observables (CSCO) is made, {M2, J 2, Pi, S3(P )},
where Pi are the spatial components of the four momentum operator and S3(P ) is
the spin in the particle’s rest frame on the 3-axis (which can be constructed from
the generators of the Poincaré transformations, but the exact form is not required
here).

Other choices for the CSCO can be made (Keister and Polyzou, 1991;
Polyzou, 2003a,b), but the choice

{M2, J 2, P, S3(P )}
leads to the basis called the Wigner basis for the expansion of the UIR(s, j ). Later
we will make a slight modification and use P̂i = Pi/M , the spatial components of
the 4-velocity operators, but that will only change the normalization for the basis
kets. If the Hilbert space is chosen for the the UIR, then elements φ ∈ H(s, j )
can be realized as a direct product of Lebesgue square integrable functions of the
momentum and Lebesgue square summable over the spin components.

If additionally the realizations of the elements of the UIR are chosen to be
elements of the Schwartz space of “well-behaved” functions of the momentum φ ∈
�(s, j ), then improper eigenvectors, or Dirac eigenkets, of this CSCO |p, ξ [s, j ]〉
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are elements of the linear topological dual �× of � (Bohm, 1973; Bohm and
Gadella, 1989) and have the following properties:

M2|p, ξ [s, j ]〉 = s|p, ξ [s, j ]〉
J 2|p, ξ [s, j ]〉 = j (j + 1)|p, ξ [s, j ]〉
P|p, ξ [s, j ]〉 = p|p, ξ [s, j ]〉

S3(P)|p, ξ [s, j ]〉 = ξ |p, ξ [s, j ]〉, (13)

We choose a relativistically invariant normalization,

〈p′, ξ ′[s, j ]|p, ξ [s, j ]〉 = 2sp0δ
3(p′ − p)δξ ′ξ , (14)

giving the form to the expansion of a vector φ ∈ � with invariant measure

φ = 1

s

∑

ξ

∫
d3p
2p0

|p, ξ [s, j ]〉〈p, ξ [s, j ]|φ〉. (15)

For φ ∈ �(s, j ) and |p, ξ [s, j ]〉 ∈ �×, the Poincaré transformations then
have the form

U (�, a)φξ (p) = 〈p, ξ [s, j ]|U (�, a)φ〉
= 〈p, ξ [s, j ]|U (�, a)|φ〉
= eip·a ∑

ξ ′
D

j

ξ ′ξ (W (�,�−1p))φξ ′(�−1p) (16a)

or equivalently

U (�, a)|p, ξ [s, j ]〉 = e−i(�p)·a ∑

ξ ′
D

j

ξ ′ξ (W (�,p))|�p, ξ ′[s, j ]〉, (16b)

where D
j

ξ ′ξ (R) is the 2j + 1 dimension representation of the quantum mechanical
spatial rotation R ∈ SU(2) and W (�,p) ∈ SU(2) is called the Wigner rotation. Its
exact form in terms of representative boosts is related to the choice of S3(P) for
the spin degeneracy operator (Kummer, 1966). Using S3(P), the rotation W (�,p)
has the form

W (�,p) = L(�p)−1�L(p) (17)

where L(p) is a representative element of the left coset space SO(1, 3)/SO(3)
(or considering the quantum mechanical Poincaré group SL(2, C)/SU(2)). For
our choice of S3(P), the L(p) are the standard boosts that take a vector from the
rest frame to momentum p without rotation. Other choices of representants are
connected with alternate choices for the spin degeneracy quantum number and
lead to alternate bases, such as the helicity basis.
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We will also consider the case where the standard representation for the parity
P and charge parity operator C are represented by unitary linear operators UP

and UC . These symmetries, while not respected by the weak interaction, are held
by the strong and electromagnetic interactions and therefore may be useful for
the analysis of some resonances. Particles are assumed to have well defined parity
π = ±1

UP |p, ξ [s, j, π ]〉 = π | − p, ξ [s, j, π ]〉. (18)

If the particle represented by the UIR is also an eigenstate of charge parity, then
UC has the action

UC |p, ξ [s, j, π, η]〉 = η|p, ξ [s, j, π, η]〉, (19)

where η = ±1. If they are not eigenstates, then UC has the action

UC |p, ξ [s, j, π, n]〉 = η|p, ξ [s, j, π, n̄]〉, (20)

where n are the eigenvalues of operators like charge that do not commute with UC

and n̄ are their conjugate values; η only has physical significance for the case of CP
eigenstates n = n̄. We will work in the projective representation of the extended
Poincaré group where (UCUP )2 = ±1, where the plus is for bosons and the minus
for fermions (Goldberg, 1969; Scurek, 2004).

6. RELATIVISTIC GAMOW KET AND THE CLEBSCH-GORDON
TECHNIQUE

Here we give a brief outline of the definition and derivation of the relativistic
Gamow vector and how it partially answers some of the questions raised in the
introduction. The goal is to generalize the UIR’s of the Poincaré group UIR(s, j )
to complex mass squared s → sR = (M − i�/2)2.

Consider the resonant scattering amplitude from the in-state φin to the out-
observable ψout:

(ψout, Sφin) = (�−ψout,�+φin) = (ψ−, φ+), (21)

where S is the S-matrix operator S = (�−)†�+ and �± are the Møller wave op-
erators. The in-state φin and out-observable ψout are collections of particles, for
example φin might be the two particles in the beams that collide to form the reso-
nance or unstable system and ψout are the decay product particles. Treating the in-
and out-particles as stable, then the in-state and out-observables are vectors in the
direct product spaces of the UIRs for each particle in the collection which satisfy
the boundary conditions φ+ ∈ �− and ψ− ∈ �+. For the analysis to proceed, we
must decompose these direct product states into elementary systems, i.e., into a
direct sum of UIRs. This technique is called relativistic partial wave analysis or
the Clebsch-Gordon technique for the Poincaré group.
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In general, the direct product of two UIRs of the Poincaré group can be
decomposed into a direct sum of UIRs:

UIR(s1, j1) ⊗ UIR(s2, j2) =
∑

j,ν

∫
dµ(s)UIR(s, j )ν, (22)

where dµ(s) is some integral measure over the mass squared variable labeling
the direct sum UIRs, j is the spin of the direct sum UIRs, and ν is a set of
degeneracy parameters arising from the coupling scheme used. This is in analogy
to the Clebsch-Gordon technique for the rotation group, where two spin states are
coupled into a total angular momentum state:

|ξ1, j1〉 ⊗ |ξ2, j2〉 =
j1+j2∑

j=|j1−j2|

+j∑

ξ=−j

〈ξ, j |ξ1ξ2, j1j2〉|ξ, j 〉 (23)

and 〈ξ, j |ξ1ξ2, j1j2〉 is the Clebsch-Gordon coefficient (CGC) for the rotation
group (there is no ν for this case).

Each of the UIR in the sum can be decomposed in its own Wigner 3-
momentum spin basis which we will denote as |p, ξ [s, j, α12](ν)〉. These transform
irreducibly in the sense of (16). For future equations, we establish their normal-
ization so that the basis kets from different UIRs of the direct sum are orthogonal,
as well as the standard momentum and spin component orthogonality:

〈pξ [sj lsα12](ν)|p′ξ ′[s′j ′α12](ν ′)〉 = 2p0s
2δ3(p − p′)δξξ ′δ(s − s′)δjj ′δνν ′ . (24)

With this choice, we have

|p, ξ [s, j, α](χ )〉 = 1

s1s2

∑

ξ1ξ2

∫
d3p1d

3p2

4(p1)0(p2)0
|p1ξ1p2ξ2[α]〉

×〈p1ξ1p2ξ2[α]|p, ξ [s, j, α](ν)〉, (25)

and

|p1ξ1p2ξ2[α]〉 =
∑

jν

∫ ∞

(m1+m2)2

ds

s2

∑

ξ

d3p
2p0

|p, ξ [s, j, α](ν)〉

×〈p, ξ [s, j, α](ν)|p1ξ1p2ξ2[α]〉. (26)

This choice of normalization and integration measure over the mass is somewhat
non-standard, but is useful because then both the direct product and direct sum
kets have the same dimensional units and the CGCs are unitless.

As an example, using the normalization and basis Dirac kets we have chosen
and the spin-orbit angular momentum coupling scheme (Joos, 1962; Macfarlane,
1962), the CGC between a single particle UIR in its rest frame pr = (

√
s, 0) and

the direct product of two single particle UIRs with zero spin and equal mass
√

s0
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is

〈p1p2[α]|pr ξ [sjα](ls)〉 = 4

[
4s

s − 4s0

]1/4

s0s
3/2δ3(p1 + p2)

×δ
(
s − 4(p1)2

0

)
δs,0δl,j Yjξ (p̂1).

(27)

In this equation the degeneracy parameters ν, now identified as s and l, are
established by the spin-orbit angular coupling scheme used. The half-integer s is
the results from coupling the spins of the two particles (zero for this case) and
l is the integer orbital angular momentum in the rest frame. Then s = 0 and l

couple into the total angular momentum j = l. In general, various combinations
of s and l give a particular j and therefore a particular UIR with mass m and
angular momentum j appears several times in the reduction of the direct product.
The spherical harmonic Yjξ (p̂1) is a function of the unit direction vector p̂1, which
points in the direction of the relative 3-momentum in the center of mass frame.

If we also want to consider the action of UP and UC , we need also to have
the Clebsch-Gordon coefficients for the full Poincaré group. These results have
recently been derived (Harshman and Licata, 2005) and reproduce the standard
relations achieved through the standard techniques (Weinberg, 1995) in an easy,
manifestly relativistic way. For example, returning to the same case as above, if
the equal mass particles are a particle-antiparticle pair, then the CGC becomes

〈p1p2[απ1π2] pr ξ [sjαπη](ls)〉 = 4

[
4s

s − 4s0

]1/4

s0s
3/2

× δ3(p1 + p2)δ(s − 4(p1)2
0)δs,0δl,j Yjξ (p̂1)δπ1π2(−)l ,π δ(−)l+s ,η

(28)

where π is the parity and η is the charge parity of the direct sum UIR(s, j )ν .
With these CGCs, we can return to the scattering amplitude (21) where now

the in-states and out-observables can be expressed in terms of the direct sum
basis, i.e. they can be decomposed into a superposition of elementary systems.
The interacting kets in the direct sum basis can be constructed formally by the
Møller wave operators,

|p, ξ [s, j, α](ν)±〉 = �±|p, ξ [s, j, α](ν)〉, (29)

and a complete set of these elementary systems can be inserted to expand the
in-state and out-observable. Note that

〈p, ξ [s, j, α](ν)+|φ+〉 = 〈p, ξ [s, j, α](ν)|φin〉 ∈ {suitable realization of �−}
(30)
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and

〈p, ξ [s, j, α](ν)−|ψ−〉 = 〈p, ξ [s, j, α](ν)|ψout〉 ∈ {suitable realization of �+},
(31)

where the suitable realization is provided in (Bohm et al., 2003a,b).
Briefly summarizing known results (see Bohm et al., 2003a,b for more de-

tails), from invariance principles, the S-matrix will be diagonal in s and j and
so the partial amplitude containing the corresponding to the resonance angular
momentum jR can be considered. The pole term can be separated from the non-
resonant background term and by contour integration we can define the relativistic
Gamow ket from the pole term. An expression for the relativistic Gamow ket in
the rest frame then becomes

|p̂r , ξ [sR, jR, α](νR)−〉 = 1

2π

∫ +∞

−∞II

ds

s − sR

|p̂r , ξ [s, jR, α](νR)−〉. (32)

Several things must be noted. Here, for reasons discussed below, we have surrep-
titiously switched to the 4-velocity basis, where p̂ = p/

√
s = (p̂0, p̂) = (γ, γ v)

and i = {1, 2, 3}. The integral is taken on the second sheet of the S-matrix analyt-
ically continued in s. The relativistic Gamow ket can be thought of as the analytic
extension of the out-going Lippmann-Schwinger ket |p̂r , ξ [s, jR, α](νR)−〉 ∈ �×

+,
and the time asymmetry comes from the analyticity requirements.

To summarize the important points from this presentation, what are the math-
ematical costs of generalizing the UIR of Poincaré group with real s to something
with complex sR = (M − i�/2)2? And are these costs or profits?

• By taking s → sR = (M − i�/2)2, we no longer have a UIR of the
Poincaré, but a new object. It is an irreducible representation IR (no longer
unitary) of the Poincaré semigroup IR(sR, jR)νR labeled by the complex
mass, resonance spin and internal parameters. This is the Poincaré group
such that the set of (�, a) are restricted to only those translations where
aµaµ ≥ 0 (Bohm et al., 2002, 2003a,b).

• By making the mass complex, the momentum becomes complex. However,
by considering a “minimally complex” representation of the IR(sR, jR)νR ,
the 4-velocity will remain real. Except for the restriction to the semigroup
and the necessary normalization changes required for working with the
4-velocity eigenkets, the defining transformation representation (16) has
the same form. And from (16) for the Poincaré group, the Weisskopf-
Wigner relation can be proved to hold exactly for the relativistic Gamow
ket (Bohm et al., 2003a,b). This is equivalent to working with the point
form of dynamics (Keister and Polyzou, 1991; Polyzou, 2003a,b).

• As mentioned before, for all this to work out we must work with elements
of some spaces larger than the Hilbert space that contain the Lippmann-
Schwinger kets and the relativistic Gamow ket. The out-observable must
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be restricted to �+ and the in-state to �−, but this choice is equivalent to
choosing causal boundary conditions for the scattering experiment (Bohm
et al., 2002), and so this is not a cost at all.

7. SUMMARY AND SPECULATION

As a conclusion, we consider a specific case and see what questions have
been answered and what questions have been raised. The ϒ(4S) resonance, an
excited bound state of a bb̄ quark pair, shows up in the cross section of e+e− →
hadrons scattering. Its primary decay products (nearly 100%) are the particle-
antiparticle pairs B0B̄0 and B+B−. Setting our clock so it is created at t = 0,
and calling τ the lifetime of the ϒ(4S), we might picture the following sequence
of events if we wanted to adhere to the Wigner perspective of the introductory
quotation. If we could observe the ϒ(4S) at times t � τ , we might imagine it
would appear stable, and thus be approximately represented as an element of
UIR(M2

ϒ, jϒ = 1). After a long time, the ϒ(4S) will have decayed into B0B̄0 or
B+B−, and therefore be expressible in terms of the irreducible decomposition of
a superposition (or a mixture) of UIR(MB0 , jB0 = 0) ⊗ UIR(MB̄0 , jB̄0 = 0) and
UIR(MB+ , jB+ = 0) ⊗ UIR(MB− , jB− = 0). Although the B-mesons are unstable
themselves, they are very long-lived compared to the ϒ(4S) and again could be
treated as approximately stable. Thus in these two extremes the Netwon-Wigner
idea that any state can be decomposed into elementary systems seems a reasonable
approximation, although this is not rigorously mathematical.

But what about when t ≈ τ , when the decaying is taking place? How does
the transition from a single UIR to a mixture or superposition of two other direct
products of UIRs take place? The relativistic Gamow ket gives us some hint. The
ket for the ϒ(4S) at rest should be either a superposition or a mixture of the kets
defined from (32),

|ϒ(4S) at rest〉 = |p̂r , ξ [(Mϒ − i�ϒ/2)2, jR = 1, B0B̄0](s = 0, l = 1)−〉 (33)

and

|ϒ(4S) at rest〉 = |p̂r , ξ [(Mϒ − i�ϒ/2)2, jR = 1, B+B−](s = 0, l = 1)−〉.
(34)

In other words, the ket to represent the ϒ(4S) is an element of

IR(Mϒ − i�ϒ/2)2, jR = 1)νR ,

which is a subset of the dual Hardy space �×
+ and this relativistic Gamow ket can

be constructed from the UIRs of the decay products and has the quantum numbers
of the decaying state.

These three representation spaces are approximations of the real spaces and
a full description which requires solving the Lippmann-Schwinger equations and
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Møller wave operators to construct and connect the real spaces. The question
of how to construct interacting states from elementary systems is only formally
complete. Nonetheless, I hope this sheds a little light on the underlying emergent
property of the Poincaré semigroup and partially answers the question of how to
represent unstable states by decomposing them into elementary systems.

As a final comment, the perspective of reducing particle phenomena to el-
ementary systems seems to have gone somewhat out of fashion since the rise of
gauge field theory. I believe there are many interesting questions currently unan-
swerable with the techniques of perturbative gauge field theory that may be more
tractable from this perspective. Two examples are the infraparticle problem (Buch-
holz, 1986; Frölich et al., 1979; Schoer, 1963) and the Blum-Saller non-minimally
complex representations of the Poincaré group with complex mass (Blum and
Saller, 2003). To follow such a program, the properties of the Clebsch-Gordon
coefficients for the Poincaré group are required and there are many open questions
there.
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